Normalized Gaussian Network Based on Variational Bayes Inference and Hierarchical Model Selection
نویسندگان
چکیده
منابع مشابه
Hierarchical Model Selection for NGnet Based on Variational Bayes Inference
This article presents a variational Bayes inference for normalized Gaussian network, which is a kind of mixture models of local experts. In order to search for the optimal model structure, we develop a hierarchical model selection method. The performance of our method is evaluated by using function approximation and nonlinear dynamical system identification problems. Our method achieved better ...
متن کاملBayesian Normalized Gaussian Network and Hierarchical Model Selection Method
This paper presents a variational Bayes (VB) method for normalized Gaussian network, which is a mixture model of local experts. Based on the Bayesian framework, we introduce a meta-learning mechanism to optimize the prior distribution and the model structure. In order to search for the optimal model structure efficiently, we also develop a hierarchical model selection method. The performance of...
متن کاملOnline Model Selection Based on the Variational Bayes
The Bayesian framework provides a principled way of model selection. This framework estimates a probability distribution over an ensemble of models, and the prediction is done by averaging over the ensemble of models. Accordingly, the uncertainty of the models is taken into account, and complex models with more degrees of freedom are penalized. However, integration over model parameters is ofte...
متن کاملVariational Bayes Inference for Logic-Based Probabilistic Models on BDDs
Statistical abduction is an attempt to define a probability distribution over explanations derived by abduction and to evaluate them using their probabilities. In statistical abduction, deterministic knowledge like rules and facts are described as logic formulas. However nondeterministic knowledge like preference and frequency seems difficult to represent as logic. Bayesian inference can reflec...
متن کاملRobust Inference with Variational Bayes
In Bayesian analysis, the posterior follows from the data and a choice of a prior and a likelihood. One hopes that the posterior is robust to reasonable variation in the choice of prior and likelihood, since this choice is made by the modeler and is necessarily somewhat subjective. For example, the process of prior elicitation may be prohibitively time-consuming, two practitioners may have irre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Society of Instrument and Control Engineers
سال: 2003
ISSN: 0453-4654
DOI: 10.9746/sicetr1965.39.503